

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4316-4319

Bioorganic & Medicinal Chemistry Letters

Anti-AIDS agents 72. Bioisosteres (7-carbon-DCKs) of the potent anti-HIV lead DCK

Yang Wang,^a Shao-Xu Huang,^a Peng Xia,^{a,*} Yi Xia,^b Zheng-Yu Yang,^b Nicole Kilgore,^c Susan L. Morris-Natschke^b and Kuo-Hsiung Lee^{b,*}

^aDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, China
^bNatural Products Research Laboratories, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
^cPanacos Pharmaceuticals, Inc., 209 Perry Parkway, Suite 7, Gaithersburg, MD 20877, USA

Received 28 March 2007; revised 4 May 2007; accepted 9 May 2007 Available online 16 May 2007

Abstract—Three 9,10-di-O-(-)-camphanoyl-7,8,9,10-tetrahydro-benzo[h]chromen-2-one (7-carbon-DCK) analogs (**3a**–c) were synthesized and evaluated for inhibition of HIV-1 replication in H9 lymphocytes. All three new carbon bioisosteres of the anti-HIV lead DCK showed anti-HIV activity. Compound **3a** had an EC₅₀ value of 0.068 μ M, which was comparable to that of DCK in the same assay. The preliminary results indicated that 7-carbon-DCK analogs merit attention as potential HIV-1 inhibitors for further development into clinical trials candidates.

© 2007 Elsevier Ltd. All rights reserved.

3',4'-Di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK, 1) demonstrated extremely potent inhibitory activity against HIV-1 replication in H9 lymphocytic cells with an EC₅₀ value of $2.56 \times 10^{-4} \,\mu\text{M}$ and a therapeutic index (TI) of 1.37×10^5 in our prior research. In subsequent structural modification studies, numerous DCK derivatives were synthesized and at least 20 DCK analogs have shown promising inhibitory activity against HIV-1 replication in H9 lymphocytes.² Among them, 3-methyl, 4-methyl, and 5-methyl substituted DCKs were much more potent than DCK and AZT in the same assay with EC₅₀ and TI values ranging from 5.25×10^{-5} to $2.39 \times 10^{-7} \, \mu\text{M}$ and 2.15×10^6 to 3.97×10^8 , respectively.3 In addition, a preliminary mechanistic study showed that 3-hydroxymethyl-4-methyl DCK inhibits HIV reverse transcriptase (RT) via a different mechanism of action from those of current clinical anti-HIV/ AIDS drugs.4 It was also found that DCK analogs are strongly synergistic with approved drugs such as AZT and act at a point in the virus life cycle immediately following the target for AZT and nevirapine.4 In our recent research on structural modification of 4-methyl DCK

(2), the ring oxygen atom in the A or C ring of DCK was replaced by a sulfur atom, and these sulfur-containing analogs also exhibited potent inhibitory effects on HIV-1 replication in H9 lymphocytes.^{5,6} Moreover, gem-dimethyl substitution at the 8-position was found to be preferable to larger alkyl substituents or hydrogen atoms. 7 In a continuing effort to identify the pharmacophores in this class of potent anti-HIV agents, we designed a new series of DCK analogs, namely 7-carbon-DCK derivatives (3a-c). In these compounds, a methylene group replaces the oxygen in the C ring of DCK. Thus, these analogs are bioisosteres of DCK, and the effect of the 7-oxygen atom on the anti-HIV activity of DCK-type compounds can be further explored. In addition, to help determine the possible impact of the 8,8-dimethyl groups, both unsubstituted (3a and **3b)** and dimethylated (**3c)** analogs were prepared. Herein, we report the synthesis of compounds 3a-c and their preliminary anti-HIV bioassay results (Fig. 1).

The synthesis of **3a** and **3b** was accomplished by a sevenstep sequence, as illustrated in Scheme 1. The key intermediates 7,8-dihydro-benzo[h]chromen-2-one (**10a**) and its 4-methyl analog (**10b**) were prepared according to the procedure reported in our prior work.⁸ Sharpless asymmetric dihydroxylation (AD) of **10a** and **10b** afforded dihydroxy derivatives **11a** and **11b** in moderate yield (45–49%).⁹ Finally, 7-carbon-DCK analogs **3a** and **3b**

Keywords: Anti-HIV activity; DCK; Bioisostere.

^{*}Corresponding authors. Tel.: +86 21 54237563 (P.X.); tel.: +1 919 962 0066; fax: +1 919 966 3893 (K.-H.L.); e-mail addresses: pxia@shmu.edu.cn; khlee@unc.edu

Figure 1. Structures of DCK (1), 4-methyl DCK (2), and 7-carbon-DCK analogs (3a-c).

Scheme 1. Synthesis of 3a and 3b. Reagents and conditions: (i) Raney Ni-Al alloy, 1% aq KOH/water, 90 °C, 2 h; (ii) L-Malic acid, H_2SO_4 , HOAc, 140 °C, 6 h (R = H); $CH_3COCH_2COOC_2H_5$, $POCl_3$, $POCl_$

were obtained in 62% and 82% yields, respectively, by acylation of 11a and 11b with (S)-(-)-camphanic chloride in CH_2Cl_2 at room temperature with pyridine as acid scavenger.

As shown in Scheme 2, the preparation of **3c** followed a slightly different synthetic route with 5-methoxy-1-tetralone (**12**) as starting material. Dimethylation of **12** with CH₃I in the presence of *t*-BuOK afforded 2,2-dimethyl5-methoxy-1-tetralone (**13**) in 91% yield. ¹⁰ Reduction of dimethylated tetralone **13** with H₂ catalyzed with 10% Pd-C gave 1,2,3,4-tetrahydro-5-methoxy-2,2-dimethylnaphthalene (**14**) quantitatively. ¹¹ Demethylation of **14** with BBr₃ resulted in the formation of phenol derivative **15** in 98% yield. ¹¹ The remaining synthetic steps followed those detailed above for **3a** and **3b** from phenol **5**. The target compound **3c** was thus obtained in an overall yield of 5% via a six-step reaction sequence start-

ing from 15. Physical and spectral data for 3a-c were consistent with their chemical structures.¹²

The anti-HIV activities of compounds **3a-c** were evaluated in H9 lymphocytes, with AZT as the reference compound. The bioassay data are shown in Table 1 and indicated that all three compounds inhibited HIV replication and had reasonable therapeutic index (TI) values. Compounds **3a** and **3b** had significant EC₅₀ values of 0.068 and 0.083 μM, respectively. Thus, the presence of the C-4 methyl in these 7-carbon DCK analogs did not lead to increased potency, in contrast to results with DCK and 4-methyl DCK. Although an absence of gemdimethylation was detrimental in the 7-oxy DCK series, it was hard to make a definitive conclusion in the 7-carbon DCK series (comparison of **3c** with **3b**) due to solubility problems with **3c**. However, the 7-carbon analog **3b** was more potent and had a higher TI than the corre-

Scheme 2. Synthesis of 3c. Reagents and conditions: (i) *t*-BuOK/THF, reflux, 5 h, CH₃I, 0.5 h; (ii) H₂, Pd-C, CH₃SO₃H, HOAc, CH₃COOC₂H₅, C₂H₅OH, rt, 36 h; (iii) BBr₃/CH₂Cl₂, -78 °C; (iv) CH₃COCH₂COOC₂H₅, POCl₃, benzene, reflux, 24 h, 66.0%; (v) CrO₃, HOAc, rt, 30 h (yield: 17 = 39.0%, 18 = 19.9%); (vi) NaBH₄, CH₃OH, 0.5 h (yield: 70.3%); (vii) 2% H₂SO₄, 120–130 °C, 5 h (yield: 95.0%); (viii) AD-mix-α (K₂OsO₄ · 2H₂O, K₃Fe(CN)₆, (DHQ)₂PHAL, K₂CO₃), *t*-butanol/H₂O 1:1, CH₃SO₂NH₂, rt, 32 h (yield: 75.5%); (ix) (*S*)-camphanic chloride, Et₃N, DMAP, CH₂Cl₂, rt, 4 h (yield: 81.2%).

Table 1. Anti-HIV data of compounds 3a-c in acutely infected H9 lymphocytes

Compound	$IC_{50}^{a}(\mu M)$	$EC_{50}^{b}(\mu M)$	TI ^c
3a	57.2	0.068	841
3b	54.4	0.083	659
$3c^{d}$	>39.4	< 0.39	>100
DCK ^e	>16.1	0.049	>328
4-Me DCK ^e	>38.9	0.0059	>6600
AZT	500	0.0137	36,520

^a Concentration that inhibits uninfected H9 cell growth by 50%.

sponding demethylated 7-oxy DCK derivative, 2',2'-dihydro-4-methyl DCK (EC₅₀ = 6.9 μ M, TI > 6). Compound **3b** was also more potent against HIV replication but was more cytotoxic than the analogous 7-thio analog (EC₅₀ = 0.141 μ M, TI = 1,110).

Further structural modification and biological screening are in progress as these promising bioassay results demonstrate that 7-carbon-DCK analogs merit attention as potential HIV-1 inhibitors.

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Nos.

20272010 and 20672022) awarded to P. Xia and Y. Wang, respectively, a research grant (20020246069) for Ph.D. program from the National Education Administration of China awarded to P. Xia, and Grant AI-33066 from the National Institute of Allergies and Infectious Diseases awarded to K.H. Lee.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl. 2007.05.026.

References and notes

- Huang, L.; Kashiwada, Y.; Cosentino, L. M.; Fan, S.; Chen, C. H.; McPhail, A. T.; Fujioka, T.; Mihashi, K.; Lee, K. H. J. Med. Chem. 1994, 37, 3947.
- Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Med. Res. Rev. 2003, 23, 322.
- 3. Xie, L.; Takeuchi, Y.; Cosentino, L. M.; Lee, K. H. J. Med. Chem. 1999, 42, 2662.
- Xie, L.; Yu, D.; Wild, C.; Allaway, G.; Turpin, J.; Smith, P. C.; Lee, K. H. J. Med. Chem. 2004, 47, 756.
- Xia, P.; Yin, Z. J.; Chen, Y.; Zhang, Q.; Zhang, B. N.;
 Xia, Y.; Yang, Z. Y.; Kilgore, N.; Wild, C.; Morris-Natschke, S. L.; Lee, K. H. *Bioorg. Med. Chem. Lett.* 2004, 14, 3341.
- Chen, Y.; Zhang, Q.; Zhang, B. N.; Xia, P.; Xia, Y.; Yang, Z. Y.; Kilgore, N.; Wild, C.; Morris-Natschke, S. L.; Lee, K. H. *Bioorg. Med. Chem.* 2004, 12, 6383.

^b Concentration that inhibits viral replication by 50%.

^c TI, therapeutic index IC₅₀/EC₅₀.

^d More precise data could not be determined due to solubility problems.

^eThe data for DCK and 4-methyl DCK were cited from Ref. 8. EC₅₀ and TI values for DCK and 4-methyl DCK were $2.56 \times 10^{-4} \,\mu\text{M}$, $1.83 \times 10^{-6} \,\mu\text{M}$, and 1.37×10^{5} , 6.89×10^{7} , respectively, in previous screenings, using a different methodology, and publications.¹

- Zhang, Q.; Chen, Y.; Xia, P.; Xia, Y.; Yang, Z. Y.; Yu, D.
 L.; Morris-Natschke, S. L.; Lee, K. H. Bioorg. Med. Chem. Lett. 2004, 14, 5855.
- 8. Wang, Y.; Huang, S. X.; Xia, P. Synth. Commun. 2005, 35, 3141
- 9. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768.
- Gabriel Garcia, J.; Enas, J. D.; Fronczek, F. R.; VanBrocklin, H. F. J. Org. Chem. 1994, 59, 8299.
- Bayston, D. J.; Fraser, J. L.; Ashton, M. R.; Baxter, A. D.; Polywka, M. E. C.; Moses, E. J. Org. Chem. 1998, 63, 3137.
- Physical and spectral data for 3a–c:
 9,10-Di-O-(-)-camphanoyl-7,8,9,10-tetrahydro-benzo [h] chromen-2-one (3a). Mp 120–122 °C; ¹H NMR (CDCl₃, 300 MHz) δ 0.94–1.13 (m, 18H, camphanoyl CH₃), 1.61–2.56 (m, 10H, 8-H, camphanoyl CH₂), 3.07–3.17 (m, 2H, 7-H), 5.31–5.40 (m, 1H, 9-H), 6.38 (d, J = 9.3 Hz, 1H, 3-H), 6.82 (d, J = 2.7 Hz, 1H, 10-H), 7.12 (d, J = 8.1 Hz, 1H, 6-H), 7.44 (d, J = 8.1 Hz, 1H, 5-H), 7.67 (d, J = 9.6 Hz, 1H, 4-H). ESI-MS m/z (%): 615.25 (M+Na⁺, 100). HR-

MS: calcd for $C_{33}H_{36}O_{10}Na^+$ 615.2201, found 615.2191. 9,10-Di-O-(-)-camphanoyl-4-methyl-7,8,9,10-tetrahydrobenzo [h] chromen-2-one (3b). Mp 159–161 °C; ¹H NMR (CDCl₃, 300 MHz) δ 0.96–1.12 (m, 18H, camphanoyl CH₃), 1.61–2.56 (m, 10H, 8-H, camphanoyl CH₂), 2.42 (s, 3H, 4-CH₃), 3.00–3.20 (m, 2H, 7-H), 5.31–5.38 (m, 1H, 9-H), 6.24 (s, 1H, 3-H), 6.83 (d, J = 2.7 Hz, 1H, 10-H), 7.12 (d, J = 8.1 Hz, 1H, 6-H), 7.55 (d, J = 8.1 Hz, 1H, 5-H). ESI-MS m/z (%): 606.30 (M $^+$, 19). HR-MS: calcd for $C_{34}H_{38}O_{10}Na^+$ 629.2357, found 629.2367.

9,10-Di-O-(-)-camphanoyl-4,8,8-trimethyl-7,8,9,10-tetrahydro-benzo [h] chromen-2-one (3c). Mp 148–150 °C;

NMR (CDCl₃, 300 MHz) δ 0.92–1.30 (m, 24H, camphanoyl CH₃, 8-CH₃), 1.61–1.76 (m, 2H, camphanoyl CH₂), 1.86–1.98 (m, 2H, camphanoyl CH₂), 2.45 (s, 3H, 4-CH₃), 2.50–2.61 (m, 2H, camphanoyl CH₂), 2.82–3.02 (m, 2H, 7-H), 5.35 (d, J = 5.1 Hz, 1H, 9-H), 6.25 (s, 1H, 3-H), 6.76 (d, J = 5.1 Hz, 1H, 10-H), 7.11 (d, J = 8.4 Hz, 1H, 6-H), 7.59 (d, J = 8.1 Hz, 1H, 5-H). ESI-MS m/z (%): 657.30 (M+Na⁺, 100). HR-MS: calcd for C₃₆H₄₂O₁₀Na⁺ 657.2670, found 657.2690.